SACAME DE AQUI!

miércoles, 22 de abril de 2015

Energía nuclear

La energía nuclear es la energía en el núcleo de un átomo. Los átomos son las partículas más pequeñas en que se puede dividir un material. En el núcleo de cada átomo hay dos tipos de partículas (neutrones y protones) que se mantienen unidas. La energía nuclear es la energía que mantiene unidos neutrones y protones.

La energía nuclear se puede utilizar para producir electricidad. Pero primero la energía debe ser liberada. Ésta energía se puede obtener de dos formas: fusión nuclear y fisión nuclear. En la fusión nuclear, la energía se libera cuando los átomos se combinan o se fusionan entre sí para formar un átomo más grande. Así es como el Sol produce energía. En la fisión nuclear, los átomos se separan para formar átomos más pequeños, liberando energía. Las centrales nucleares utilizan la fisión nuclear para producir electricidad.

 Cuando se produce una de estas dos reacciones físicas (la fisión nuclear o la fusión nuclear) los átomos experimentan una ligera pérdida de masa. Esta masa que se pierde se convierte en una gran cantidad de energía calorífica como descubrió el Albert Einstein con su famosa ecuación E=mc2.
Aunque la producción de energía eléctrica es la utilidad más habitual existen muchas otras aplicaciones de la energía nuclear en otros sectores: como en aplicaciones médicasmedioambientales, iundustriales o militares (bomba atómica).








Funcionamiento de una central nuclear 

El principal uso que se le da actualmente a la energía nuclear es el de la generación de energía eléctrica. Las centrales nucleares son las instalaciones encargadas de este proceso. Prácticamente todas las centrales nucleares en producción utilizan la fisión nuclear ya que la fusión nuclear actualmente es inviable a pesar de estar en proceso de desarrollo.
El funcionamiento de una central nuclear es idéntico al de una central térmica que funcione con carbón, petróleo o gas excepto en la forma de proporcionar calor al agua para convertirla en vapor. En el caso de los reactores nucleares este calor se obtiene mediante las reacciones de fisión de los átomos del combustible nuclear.
A nivel mundial el 90% de los reactores de potencia, es decir, los reactores destinados a la producción de energía eléctrica son reactores de agua ligera (en las versiones de agua a presión o de agua en ebullición). De modo que explicaremos más extensamente el funcionamiento de este tipo de reactor.

Funcionamiento de un reactor nuclear de agua ligera

El principio básico del funcionamiento de una central nuclear se basa en la obtención de energía calorífica mediante la fisión nuclear del núcleo de los átomos del combustible. Con esta energía calorífica, que tenemos en forma de vapor de agua, la convertiremos en energía mecánica en una turbina y, finalmente, convertiremos la energía mecánica en energía eléctrica mediante un generador.
El reactor nuclear es el encargado de provocar y controlar estas fisiones atómicas que generarán una gran cantidad de calor. Con este calor se calienta agua para convertirla en vapor a alta presión y temperatura.
El agua transformada en vapor sale del edificio de contención debido a la alta presión a que está sometido hasta llegar a la turbina y hacerla girar. En este momento parte de la energía calorífica del vapor se transforma en energía cinética. Esta turbina está conectada a un generador eléctrico mediante el cual se transformará la energía cinética en energía eléctrica.

Por otra parte, el vapor de agua que salió de la turbina, aunque ha perdido energía calorífica sigue estando en estado gas y muy caliente. Para reutilizar esta agua hay refrigerarla antes de volverla a introducir en el circuito. Para ello, una vez ha salido de la turbina, el vapor entra en un tanque (depósito de condensación) donde este se enfría al estar en contacto con las tuberías de agua fría. El vapor de agua se vuelve líquido y mediante una bomba se redirige nuevamente al reactor nuclear para volver a repetir el ciclo.
Por este motivo las centrales nucleares siempre están instaladas cerca de una fuente abundante de agua fría (mar, río, lago), para aprovechar esta agua en el depósito de condensación. La columna de humo blanco que se puede ver saliendo de determinadas centrales es el vapor de agua que se provoca cuando se este intercambio de calor.

Combustible nuclear

El combustible nuclear es el material utilizado para la generación de energía nuclear. Se trata de un material susceptible de ser fisionado o fusionado según si su uso es la fisión nuclear o la fusión nuclear.
Nos referimos al combustible nuclear tanto al material (uranio, plutonio...) como al conjunto elaborado con dicho material nuclear (barras de combustible, composiciones de material nuclear y el moderador o cualquier otra combinación.
El combustible nuclear más conocido es el uranio debido a que es el más utilizado en los reactores nucleares de fisión. Actualmente todos los reactores nucleares en producción para la generación de energía eléctrica son de fisión. A otro nivel, también se utiliza el plutonio como combustible nuclear.
El tritio y el deuterio son isótopos ligeros que se utilizan en el proceso de fusión nuclear. La fusión nuclear, por el momento, no está lo suficientemente desarrollada para poderla aplicar en centrales nucleares aunque en Francia se está construyendo un reactor nuclear de fusión (proyecto ITER) para su estudio.

Ventajas de la energía nuclear

La generación de energía eléctrica mediante energía nuclear permite reducir la cantidad de energía generada a partir de combustibles fósiles (carbón y petróleo). La reducción del uso de los combustibles fósiles implica la reducción de emisiones de gases contaminantes (CO2 y otros).
Actualmente se consumen más combustibles fósiles de los que se producen de modo que en un futuro no muy lejano estos recursos se agotarían o el precio subiría tanto que serían inaccesibles para la mayoría de la población.
Otra ventaja está en la cantidad de combustible necesario; con poca cantidad de combustible se obtienen grandes cantidades de energía. Esto supone un ahorro en materia prima pero también en transportes, extracción y manipulación del combustible nuclear. El coste del combustible nuclear (generalmente uranio) supone el 20% del coste de la energía generada.

La producción de energía eléctrica es continua. Una central nuclear está generando energía eléctrica durante prácticamente un 90% de las horas del año. Esto reduce la volatilidad en los precios que hay en otros combustibles como el petróleo.
Esta continuidad favorece a la planificación eléctrica. La energía nuclear no depende de aspectos naturales. Con esto se solventa la gran desventaja de las energías renovables en que los horas de sol o de viento no siempre coinciden con las horas de más demanda energética.
Al ser una alternativa a los combustibles fósiles no se necesita consumir tanta cantidad de combustibles como el carbón o el petróleo. La reducción del consumo de carbón y petróleo ayuda a reducir el problema del calentamiento global del cambio climático del planeta. Al reducir el consumo de combustibles fósiles también mejoraría la calidad del aire que respiramos con lo que ello implicaría en el descenso de enfermedades y calidad de vida.

Desventajas de la energía nuclear

 Anteriormente hemos comentado la ventaja que supone la utilización de la energía nuclear para la reducción del consumo de combustibles fósiles. Se trata de un argumento muy utilizado por las organizaciones a favor de la energía nuclear pero es una verdad a medias. Hay que tener en cuenta que la gran parte del consumo de combustibles fósiles proviene del transporte por carretera, de su uso en los motores térmicos (automóviles de gasoil, gasolina… etc.). El ahorro en combustibles fósiles en la generación de energía eléctrica es proporcionalmente muy bajo.

 A pesar de el alto nivel de sofisticación de los sistemas de seguridad de las centrales nucleares el componente humano siempre tiene cierta repercusión. Ante un imprevisto o en la gestión de un accidente nuclear no se puede garantizar que las decisiones tomadas por los responsables sean siempre las más apropiadas. Tenemos dos buenos ejemplos en Chernobyl y en Fukushima.

El accidente nuclear de Chernobyl es, por el momento, el peor accidente nuclear de la historia. Una sucesión de decisiones equivocadas por el personal que gestionaba la central acabó causando una fuerte explosión nuclear.
En el caso del accidente nuclear de Fukushima, una vez producido el accidente, la actuación del personal encargado de gestionarlo fue muy cuestionada. Después del accidente de Chernobyl, el accidente nuclear de Fukushima fue el segundo peor de la historia.

Una desventaja importante es la difícil gestión de los residuos nucleares generados. Los residuos nucleares tardan muchísimos años en perder su radioactividad y peligrosidad.
Los reactores nucleares, una vez construidos, tienen fecha de caducidad. Pasada esta fecha deben desmantelarse, de modo que en los principales países de producción de energía nuclear para mantener constante el número de reactores operativos deberían construirse aproximadamente 80 nuevos reactores nucleares  en los próximos diez años.
Debido precisamente a que las centrales nucleares tienen una vida limitada. La inversión para la construcción de una planta nuclear es muy elevada y hay que recuperarla en muy poco tiempo, de modo que esto hace subir el coste de la energía eléctrica generada. En otras palabras, la energía generada es barata comparada con los costes del combustible, pero el tener que amortizar la construcción de la planta nuclear la encarece sensiblemente.
Las centrales nucleares son objetivo para las organizaciones terroristas.
Genera dependencia del exterior. Poco países disponen de minas de uranio y no todos los países disponen de tecnología nuclear, por lo que tienen que contratar ambas cosas en el extranjero.
Los reactores nucleares actuales funcionan mediante reacciones nucleares por fisión. Estas reacciones se producen en cadena de modo que si los sistemas de control fallasen cada vez se producirían más y más reacciones hasta provocar una explosión radioactiva que sería prácticamente imposible de contener.
Probablemente la desventaja más alarmante sea el uso que se le puede dar a la energía nuclear en la industria militar. El primer uso que se le dió a la energía nuclear fue para construir dos bombas nucleares que se lanzaron sobre Japón durante la Segunda Guerra Mundial. Esta fue la primera y útima vez que se utilizó la energía nuclear en un ataque militar. Más tarde, varios paises firmaron el Tratado de No Proliferación Nuclear, pero el riesgo que en el futuro se vuelvan a utilizar armas nucleares siempre existirá.

Aplicaciones de la tecnología nuclear

Aplicaciones industriales:

La tecnología nuclear adquiere una gran importancia en el sector industrial concretamente se utiliza en el desarrollo y mejora de los procesos, para las mediciones, la automatización y el control de calidad.
Se utiliza como requisito previo para la completa automatización de las líneas de producción de alta velocidad, y se aplica a la investigación de procesos, la mezcla, el mantenimiento y el estudio del desgaste y corrosión de instalaciones y maquinaria.
La tecnología nuclear también se utiliza en la fabricación de plásticos y en la esterilización de productos de un solo uso.

Aplicaciones médicas:

Uno de cada tres pacientes que acuden a un hospital en un país industrializado, recibe los beneficios de algún tipo de procedimiento de medicina nuclear. Se emplean radiofármacos, técnicas como la radioterapia para el tratamiento de tumores malignos, la teleterapia para el tratamiento oncológico o la biología radiológica que permite esterilizar productos médicos.

Aplicaciones en la agricultura:

La aplicación de los isótopos a la agricultura ha permitido aumentar la producción agrícola de los países menos desarrollados.
La tecnología nuclear resulta de gran utilidad en el control de plagas de insectos, en el máximo aprovechamiento de los recursos hídricos, en la mejora de las variedades de cultivo o en el establecimiento de las condiciones necesarias para optimizar la eficacia de los fertilizantes y el agua.

Aplicación a la alimentación: 

 En cuanto a la alimentación, las técnicas nucleares juegan un papel fundamental en la conservación de alimentos.
La aplicación de los isótopos permite aumentar considerablemente la conservación de los alimentos. En la actualidad, más de 35 países permiten la irradiación de algunos alimentos.

Aplicaciones medioambientales: 

La aplicación de isótopos permite determinar las cantidades exactas de las sustancias contaminantes y lugares en que se presentan así como sus causas. Además, el tratamiento con haces de electrones permite reducir las consecuencias medioambientales y sanitarias del empleo a gran escala de combustibles fósiles, y contribuye de manera más efectiva que otras técnicas a resolver problemas como “el efecto invernadero” y la lluvia ácida.

Otras aplicaciones: 

 Como la datación, que emplea las propiedades de fijación del carbono-14 a los huesos, maderas o residuos orgánicos, determinando su edad cronológica, y los usos en Geofísica y Geoquímica, que aprovechan la existencia de materiales radiactivos naturales para la fijación de las fechas de los depósitos de rocas, carbón o petróleo.
Otras aplicaciones de la tecnología nuclear se producen en disciplinas como la hidrología, la minería o la industria espacial.

Residuos nucleares: 

Que se hace con los residuos de la energía nuclear? 

Los residuos nucleares son uno de los principales problemas relacionados la energía nuclear. Si estos residuos no se tratan debidamente, resultan altamente peligrosos para la población y el medio ambiente.
Los residuos radiactivos se pueden clasificar según sus características físicas y químicas y por su actividad.
Clasificandolos por su actividad tenemos:
  • Residuos nucleares de alta actividad, compuestos por los elementos del combustible ganado.
  • Residuos nucleares de media actividad, son radionucleidos producidos en el proceso de fisión nuclear.
  • Residuos nucleares de baja actividad, básicamente se trata de las herramientas, ropas y material diverso utilizado para el mantenimiento de una central de energía nuclear.
La Empresa Nacional de Residuos Radiactivos (ENRESA) es la empresa que se encarga en España de la gestión de residuos nucleares (provengan de centrales nucleares o de otras instalaciones radiactivas como hospitales y centros de investigación relacionados con la energía nuclear). La gestión de dichos residuos nucleares está definida en el Plan General de Residuos aprobado por el Parlamento.
Los protocolos para el tratamiento de los residuos nucleares depende de su nivel de actividad radiactiva.

Residuos nucleares de media y baja actividad

Los residuos nucleares de media actividad se generan por radionucleidos liberados en el proceso de fisión (el que actualmente se utiliza en las centrales de energía nuclear) en cantidades pequeñas, muy inferiores a las consideradas peligrosas para la seguridad y la protección de las personas.
Con un tratamiento se separan los elementos radioactivos que contienen en estos subproductos y los residuos resultantes se depositan en bidones de acero solidificándolos con alquitrán, resinas o cemento.
Los residuos nucleares de baja actividad radiactiva (ropas, herramientas, etc) se prensan y se mezclan con hormigón formando un bloque sólido. Al igual que en el caso anterior éstos también se introducen en bidones de acero.
 En España, los bidones se trasladan al Centro de Almacenamiento de El Cabril (Córdoba), que ENRESA se encarga de gestionar. Además de depositarse todos los residuos nucleares de todas las centrales nucleares españolas, también se depositan los residuos nucleares generados por la medicina, la investigación, la industria y otros campos que también trabajan con energía nuclear.

Residuos nucleares de alta actividad

Una vez se ha gastado el combustible en una central de energía nuclear, se extrae del reactor para almacenarse temporalmente en una piscina de agua construida de hormigón y paredes de acero inoxidable dentro de la central para crear una barrera a las radiaciones y evitar escapes.
Si bien es cierto que estas piscinas pueden ampliarse mediante una operación llamada “reracking”, los últimos Planes Generales de Residuos prevén la construcción de almacenes temporales en seco dentro de la propia central nuclear. Éste seria un complemento a las piscinas en el paso intermedio hasta definir una localización definitiva.
La investigación sobre almacenamientos definitivos se desarrolla en numerosos países, algunos de los cuales, como Finlandia y EE.UU., han dado pasos muy importantes para su construcción y puesta en servicio.
Una de las soluciones que más se aceptan entre expertos es el Almacenamiento Geológico Profundo (AGP), generalmente en minas excavadas en formaciones geológicas estables.
Actualmente ENRESA trabaja para localizar, construir y gestionar un Almacén Temporal Centralizado donde guardar, de manera provisional y segura, los residuos nucleares de alta actividad que actualmente se guardan en las centrales nucleares españolas. Este almacenamiento permitirá ganar tiempo para buscar una ubicación adecuada para el AGP permitiendo la continuidad de las instalaciones nucleares y el almacenamiento seguro de los residuos de alta actividad.

Clasificación europea de residuos nucleares

Dado que no todos los países emplean la misma clasificación, la Comisión Europea ha recomendado unificar criterios, para lo cual propone la siguiente clasificación, en vigor desde el 1 de enero de 2002:
  • Residuos nucleares de transición: residuos, principalmente de origen médico, que se desintegran durante el período de almacenamiento temporal, pudiendo a continuación gestionarse como residuos no radiactivos, siempre que se respeten unos valores de des-clasificación.
  • Residuos nucleares de baja y media actividad: su concentración en radionucleidos es tal que la generación de energía térmica durante su evacuación es suficientemente baja. A su vez se clasifican en residuos de vida corta –que contienen nucleidos cuya vida media es inferior o igual a 30 años, con una concentración limitada de radionucleidos alfa de vida larga–y en residuos de vida larga –con radionucleidos y emisores alfa de vida larga cuya concentración es superior a los limites aplicables a los residuos de vida corta.
  • Residuos nucleares de alta actividad: Residuos con una concentración de radionucleidos tal que debe tenerse en cuenta la generación térmica durante su almacenamiento y evacuación. Este tipo de residuos se obtiene principalmente del tratamiento y acondicionamiento del combustible gastado.


1 comentario: